Interpreting lateral dynamic weight shifts using a simple inverted pendulum model.

نویسندگان

  • Michael W Kennedy
  • Timothy Bretl
  • James P Schmiedeler
چکیده

Seventy-five young, healthy adults completed a lateral weight-shifting activity in which each shifted his/her center of pressure (CoP) to visually displayed target locations with the aid of visual CoP feedback. Each subject's CoP data were modeled using a single-link inverted pendulum system with a spring-damper at the joint. This extends the simple inverted pendulum model of static balance in the sagittal plane to lateral weight-shifting balance. The model controlled pendulum angle using PD control and a ramp setpoint trajectory, and weight-shifting was characterized by both shift speed and a non-minimum phase (NMP) behavior metric. This NMP behavior metric examines the force magnitude at shift initiation and provides weight-shifting balance performance information that parallels the examination of peak ground reaction forces in gait analysis. Control parameters were optimized on a subject-by-subject basis to match balance metrics for modeled results to metric values calculated from experimental data. Overall, the model matches experimental data well (average percent error of 0.35% for shifting speed and 0.05% for NMP behavior). These results suggest that the single-link inverted pendulum model can be used effectively to capture lateral weight-shifting balance, as it has been shown to model static balance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inverted Pendulum Control Using Negative Data

   In the training phase of learning algorithms, it is always important to have a suitable training data set. The presence of outliers, noise data, and inappropriate data always affects the performance of existing algorithms. The active learning method (ALM) is one of the powerful tools in soft computing inspired by the computation of the human brain. The operation of this algorithm is complete...

متن کامل

Friction Compensation for Dynamic and Static Models Using Nonlinear Adaptive Optimal Technique

Friction is a nonlinear phenomenon which has destructive effects on performance of control systems. To obviate these effects, friction compensation is an effectual solution. In this paper, an adaptive technique is proposed in order to eliminate limit cycles as one of the undesired behaviors due to presence of friction in control systems which happen frequently. The proposed approach works for n...

متن کامل

A Spring Assisted One Degree of Freedom Climbing Model

A dynamic model of running–the spring-loaded inverted pendulum (SLIP)–has proven effective in describing the force patterns found in a wide variety of animals and in designing and constructing a number of terrestrial running robots. Climbing or vertical locomotion has, on the other hand, lacked such a simple and powerful model. Climbing robots to date have all been quasi-static in their operati...

متن کامل

Stabilization of Lateral Motion in Passive Dynamic Walking

Passive dynamic walking refers to a class of bipedal machines that are able to walk down a gentle slope with no external control or energy input. The legs swing naturally as pendula, and conservation of angular momentum governs the contact of the swing foot with the ground. Previous machines have been limited to planar motions. We extend the planar motions to allow for tilting side to side (rol...

متن کامل

Running Pattern Generation for a Humanoid Robot

A method of running pattern generation for a humanoid robot using the dynamics of a simple inverted pendulum is proposed. Dynamic simulation using a model of an actual humanoid robot shows that the robot can run by applying a generated pattern with slight modifications. The simulation is used to evaluate the required performance of actuators for an actual running robot.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Gait & posture

دوره 40 1  شماره 

صفحات  -

تاریخ انتشار 2014